IJCRT.ORG

ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

PROPERTIES OF $G\gamma_{\mu}$ OPEN-SEPARATION AXIOMS IN TOPOLOGY

¹C. PANDIAMMAL, ^{*2}P. ABARNA,

¹Assistant Professor, ^{*2}Department of Mathematics, Mother Teresa University, Nadar Saraswathi College of Arts and Science, Vadaputhupatti, Theni - 625531.

Abstract: In this paper our main interest is to introduce a new type of generalized open sets defined in terms of an operation on a generalized topological space. We have studied some properties of these newly defined sets. As an application, we have introduced some weak separation axioms and discussed some of their properties. Finally, we have studied some preservation theorems in terms of some irresolute functions.

Keywords- μ -open set, γ_{μ} -open set, γ_{μ} g-closed set.

I. INTRODUCTION

In 2018, B. Roy [9] introduced the notation of an operation on a topological space and introduced the concept of γ_{μ} open sets. In 2011 B. Roy [8] defined the concept of $\gamma_{\mu}g$ - closed sets of topological space. In 2002 Cs ászár [1] introduced the concept of generalized open sets. We now recall some notions defined in [1]. Let X be a non-empty set. A sub collection $\mu \subseteq P(X)$ (where P(X) denotes the power set of X) is called a generalized topology [1], (briefly, GT) if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . A set X with a GT μ on the set X is called a generalized topological space (briefly, GTS) and is denoted by (X, μ) . If for a GTS $(X, \mu), X \in \mu$, then (X, μ) is known as a strong GTS. Throughout the paper, we assume that (X, μ) and (Y, λ) are strong GTS's. The elements of μ are called μ -open sets and μ -closed sets are their complements. The μ -closure of a set $A \subseteq X$ is denoted by $c_{\mu}(A)$ and defined by the smallest μ -closed set containing A which is equivalent to the intersection of all μ -closed sets containing A. We use the symbol $i_{\mu}(A)$ to mean the μ -interior of A and it is defined as the union of all μ -open sets contained in A i.e., the largest μ -open set contained in a (see [3, 2, 1]). In this paper, using $g\gamma_{\mu}$ - open sets, we define and study the notions of $g\gamma_{\mu} - T_0, g\gamma_{\mu} - T_1, g\gamma_{\mu} - R_0, g\gamma_{\mu} - R_1$ spaces.

II. PRELIMINARIES

Definition 2.1: [9] Let (X, μ) be a GTS. An operation $\gamma\mu$ on a generalized topology μ is a mapping from μ to P(X) with $G \subseteq \gamma_{\mu}(A)$, for each $G \in \mu$. This operation is denoted by $\gamma_{\mu} : \mu \longrightarrow P(X)$.

Definition 2.2: [9] Let (X, μ) be a GTS and γ_{μ} be an operation on μ . A subset G of (X, μ) is called γ_{μ} -open if for each point x of G, there exists a μ -open set U containing x such that $\gamma_{\mu}(U) \subseteq G$.

A subset of a GTS (X, μ) is called γ_{μ} -closed if its complement is γ_{μ} -open in (X, μ). We shall use the symbol γ_{μ} to mean the collection of all γ_{μ} -open sets of the GTS (X, μ).

JCRI

Definition 2.3: [9] Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \longrightarrow P(X)$ be an operation. It is easy to see that the family of all γ_{μ} -open sets forms a GT on X. The γ_{μ} -closure of a set A of X is denoted by C γ_{μ} (A) and is defined as C γ_{μ} (A) = \cap {F: F is a γ_{μ} - closed set and A \subseteq F}.

Definition 2.4: [8] Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \longrightarrow P(X)$ be an operation. A subset A of X is said to be γ_{μ} g -closed if C $\gamma_{\mu}(A) \subseteq U$, whenever $A \subseteq U$ and U is a γ_{μ} -open set in (X, μ) .

Example 2.1: let X = {1, 2, 3, 4} and μ -open ={ \emptyset , X, {1}, {2}, {3}, {1,3}, {1,2}, {2,3}, {1,2,3}}. Then (X, μ) is a GTS. Now γ_{μ} : $\mu \longrightarrow$ P(X) defined by γ_{μ} (A) = $\begin{cases} A & if \ 1 \in A \\ \{2\} & Otherwise \end{cases}$

 γ_{μ} (A) open = { Ø, X, {1}, {2}, {3}, {1,3}, {1,2}, {2,3}, {1,2,3} }

 γ_{μ} (A) closed = { Ø, X, {2,3,4}, {1,3,4}, {1,2,4}, {2,4}, {3,4}, {1,4}, {4} }

 γ_{μ} g –closed set ={ Ø, X, {1,2,3}}

$(\gamma_{\mu}, \beta_{\lambda})$ - IRRESOLUTE FUNCTION:

Throughout the rest of the paper, (X, μ) and (Y, λ) will denote GTS's and $\gamma_{\mu}: \mu \to P(X)$ and $\beta_{\lambda}: \lambda \to P(Y)$ will denote operations on μ and λ respectively.

Definition 2.5: A function f: $(X, \mu) \rightarrow (Y, \lambda)$ is said to be $(\gamma_{\mu}, \beta_{\lambda})$ -irresolute if for each $x \in X$ and each β_{λ} -open set V containing f(x), there is a γ_{μ} -open set U containing x such that f(U) \subseteq V.

Example 2.2: let $X = \{1, 2, 3\}$ and $\mu = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}.$

$$\begin{split} \gamma \mu &= \{ \emptyset, X, \{1\}, \{2\}, \{1, 2\} \} \\ Y &= \{1, 2, 3\} \text{ and } \lambda = \{ \emptyset, X, \{1\}, \{2\}, \{1, 2\} \} \\ \beta_\lambda &= \{ \emptyset, X, \{1\}, \{2\}, \{1, 2\} \} \\ f(A) &= \begin{cases} A & if \ 1 \in A \\ \{2\} & otherwise \end{cases} \\ f(U) &= \{ \emptyset, X, \{1\}, \{2\}, \{1, 2\} \} \\ f(U) &\subseteq V \end{split}$$

III. PROPERTIES OF γ_{μ} G –SEPARATION AXIOMS:

Definition 3.1: A space X is called $g\gamma_{\mu}$ -T₀ if and only if to each pair of distinct points x, y of X, there exists a $g\gamma_{\mu}$ -open setcontaining one but not the other.

Example 3.1: Let X={1,2,3} and μ ={ φ ,{1},{1,2},{2,3},X}. Then (X, μ) is a GTS. Now $\gamma_{\mu}: \mu \longrightarrow P(X)$ defined by γ_{μ} (A) = $\begin{cases}
A, if \ 1 \in A \\
\{2,3\}, \ otherwise \end{cases}$ Is an operation. γ_{μ} -Open set -{ φ ,{1},{1,2},{2,3},X} γ_{μ} -closed set-{ φ ,{1},{2,3},{3},X} γ_{μ} g-closed set -{ φ ,{1},{2},{1,2},{1,3},{2,3},X} γ_{μ} g-open set-{ φ ,{1},{2},{3},{1,3},{2,3},X}

1	3
{1}	{3}
{1}	{2,3}

2	3
{2}	{3}
{2}	{1,3}

1	2
{1}	{2}
{1}	{2,3}
{1,3}	{2}

Definition 3.2: A space X is said to be $g\mu$ -T₀ space if for each pair of distinct points of X there exists a $g\mu$ -openset containing one but not the other.

Clearly, every γ_{μ} -T₀ is $g\gamma_{\mu}$ -T₀.

Example 3.2: let $X = \{1,2,3,4\}$ and μ -open = { \emptyset , X, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,3,4} }

1	2	1	3	
{1}	{2,3}	{1}	{2,3}	
{1}	{2,4}	{1}	{3,4}	
{1}	{2}	{1}	{3}	
{1}	{2,3,4}	{1}	{2,3,4}	
{1,3}	{2}	{1,2}	{3}	
{1,4}	{2}	{1,4}	{3}	
{1,3,4}	{2}	{1,2,4}	{3}	
{1,3}	{2,4}	{1,2}	{3,4}	
{1,4}	{2,3}	{1,4}	{2,3}	1
				21
	4	2	3	
{1}	{4}	{2}	{3}	
{1}	{2,4}	{2}	{1,3}	
{1}	{3,4}	{2}	{3,4}	
{1}	{2,3,4}	{2}	{1,3,4}	
{1,2}	{4}	{1,2}	{3}	
{1,3}	{4}	{2,4}	{3}	
{1,2,3}	{4}	{1,2,4}	{3}	
{1,2}	{3,4}	{1,2}	{3,4}	
{1,3}	{2,4}	{2,4}	{1,3}	

2	4
{2}	{4}
{2}	{3,4}
{2}	{1,4}
{2}	{1,3,4}
{1,2}	{4}
{2,3}	{4}
{1,2,3}	{4}
{1,2}	{3,4}
{2,3}	{1,4}

3	4
{3}	{4}
{3}	{1,4}
{3}	{2,4}
{3}	{1,2,4}
{1,3}	{4}
{2,3}	{4}
{1,2,3}	{4}
{1,3}	{2,4}
{2,3}	{1,4}

Definition 3.3: A generalized γ_{μ} -closure of set A is denoted by $g\gamma_{\mu}Cl(A)$, is the intersection of all $g\gamma_{\mu}$ -closed sets that contain A.

We characterize $g\gamma_{\mu}$ -T₀ -spaces in the following

Example 3.3: let $X = \{1, 2, 3, 4\}$ be any topological space.

 $\mu - \text{open} = \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\} \}$

 $\gamma \mu \text{ open} = \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\} \}$

 $\gamma \mu \text{ closed} = \{ \emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\} \}$

 $g\gamma\mu CL(A) = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\}\}$

Theorem 3.4: If in any topological space X, $g \gamma_{\mu} closures of distinct points are distinct then X is <math>g \gamma_{\mu} - T_{0.}$ **Proof:** Let x, $y \in x$, $x \neq y$ imply $g \gamma_{\mu} cl(\{x\}) \neq g \gamma_{\mu} cl(\{y\})$. Then there exists a point $z \in x$ such that z belongs one of two sets, say, $g \gamma_{\mu} cl(\{y\})$ but not to $g \gamma_{\mu} cl(\{x\})$. If we suppose that $z \in g \gamma_{\mu} cl(\{x\})$, then $z \in g \gamma_{\mu} cl(\{y\}) \subset z \in g \gamma_{\mu} cl(\{x\})$, which is contradiction. So, $y \in x$ - $g \gamma_{\mu} cl(\{x\})$, where X- $g \gamma_{\mu} cl(\{x\})$ is $g \gamma_{\mu}$ -open set which does not contain x. Shows that X is $g \gamma_{\mu}$ -T₀.

Next, We give the following

Example 3.4: let $X = \{1, 2, 3, 4\}$ be any topological space. Let $1, 2 \in X$ and $1 \neq 2$ gyµCL(A)={ $\emptyset,X,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\},\{1,3,4\}\}$

 $g\gamma\mu CL(\{1\}) = \{1\}$ $g\gamma\mu CL(\{2\}) = \{2\}$ $g\gamma\mu CL(\{1\}) \neq g\gamma\mu CL(\{2\})$

X is $g\gamma_{\mu}$ -T₀ Space.

Theorem 3.5: A space X is $g\gamma_{\mu}$ -T₀ if and only if $g\gamma_{\mu} Cl(\{x\}) \neq g\gamma_{\mu} Cl(\{y\})$ for every pair of distinct points x, y of X.

Proof follows from th.3.4.

Theorem 3.6: Every sub space of a g γ_{μ} -T₀ space is g γ_{μ} -T₀ space.

Proof: Let x be a space and (Y, τ^*) be a subspace of X where τ^* is the relative topology of τ on Y. Let x, y be two distinct points of Y. As $Y \subset X$, x and y are distinct points X. Since X is a g γ_{μ} -T₀ space, There exists a g γ_{μ} -open set G such that $x \in G$ but $y \notin G$. Then $G \cap Y$ is a g γ_{μ} -open set in (Y, τ^*) which contains x but does not contain y. Hence (Y, τ^*) is a g γ_{μ} -T₀ space.

We, give the following

Example 3.5: let $X = \{1, 2, 3, 4\}$ be any topological space.

 $Y \subset X \text{ and } Y = \{1, 2, 3\}$ $\mu = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ $\gamma\mu \text{-open} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ $\gamma\mu \text{-closed} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ $g\gamma\mu \text{-closed} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ $g\gamma\mu \text{-open} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$

1	2
{1}	{2}
{1,3}	{2}
{1}	{2,3}

1	3
{1}	{3}
{1,2}	{3}
{1}	{2,3}

JCR

2	3
{2}	{3}
{1,2}	{3}
{2}	{1,3}

Definition 3.7: A function f: $X \rightarrow Y$ is said to be point $g \gamma_{\mu}$ closure 1-1 if and only if x, y ϵX such that $g \gamma_{\mu} \operatorname{Cl}(\{x\}) \neq g \gamma_{\mu} \operatorname{Cl}(\{y\})$ then $f(g \gamma_{\mu} \operatorname{Cl}(\{x\})) \neq f(g \gamma_{\mu} \operatorname{Cl}(\{y\}))$.

Example 3.6: Let f: $R \rightarrow R$ is a function. Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 2, 3, 4\}$. Let $3, 4 \in X$ gy_µCL(A)={ $\emptyset,X,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\},\{1,3,4\}\}$

 $g\gamma\mu CL(\{3\}) = \{3\}$ $g\gamma\mu CL(\{4\}) = \{4\}$ $g\gamma\mu CL(\{3\}) \neq g\gamma\mu CL(\{4\})$ f(X) = X $f(g\gamma\mu CL(\{3\})) = \{3\}$ $f(g\gamma\mu CL(\{4\})) = \{4\}$ $f(g\gamma\mu CL(\{3\})) \neq f(g\gamma\mu CL(\{4\}))$

A function f: $R \rightarrow R$ is said to be point g γ_{μ} closure 1-1.

Theorem 3.8: If function f: $X \rightarrow Y$ is point $-g \gamma_{\mu}$ closure 1-1 and X is $g \gamma_{\mu}$ -T₀ then f is 1-1

Proof: Let x, $y \in X$ with $x \neq y$. Since X is $g \gamma_{\mu} - T_0$, then $g \gamma_{\mu} Cl(\{x\}) \neq g \gamma_{\mu} Cl(\{y\})$ by Theorem 3.5. But f is point $g \gamma_{\mu}$ closure 1-1 implies that $f(g \gamma_{\mu} Cl(\{x\})) \neq f(g \gamma_{\mu} Cl(\{y\}))$. Hence $f(x) \neq f(y)$. Thus, f is 1-1.

Example 3.7: let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$ be any topological space. Let $f: X \rightarrow Y$ be a function. define, the function f(1) = a, f(2) = b, f(3) = c, f(4) = d and let 1, $4 \in X$

 $g\gamma\mu CL(\{1\}) = \{1\}$ $g\gamma\mu CL(\{4\}) = \{4\}$ $f(g\gamma\mu CL(\{1\})) = \{a\}$ $f(g\gamma\mu CL(\{4\})) = \{d\}$ $f(g\gamma\mu CL(\{1\})) \neq f(g\gamma\mu CL(\{4\}))$ $f(1) \neq f(2)$ f is one-one.

Theorem 3.9: Let f: $X \rightarrow Y$ is a mapping from $g\gamma_{\mu}$ -T₀ space X into $g\gamma_{\mu}$ -T₀ space Y. Then f is pointg γ_{μ} closure 1-1 if and only if f is 1-1.

Proof follows from th.3.4. Above **Theorem 3.10:** Let f: $X \to Y$ is an injective $g\gamma_{\mu}$ -irresolute mapping. If Y is $g\gamma_{\mu}$ -T₀ then X is $g\gamma_{\mu}$ -T₀.

IJCRT2305248 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b902

Proof: Let x, $y \in X$ with $x \neq y$. Since f is injective and Y is $g\gamma_{\mu}$ -T₀, there exists a $g\gamma_{\mu}$ open set V_x inY such that $f(x) \in V_x$ and $f(y) \notin V_x$ or there exists a $g\gamma_{\mu}$ open set V_y in Y such that $f(y) \in V_y$ and $f(x) \notin V_y$ with $f(x) \neq f(y)$. By $g\gamma_{\mu}$ irresoluteness of f, $f^{-1}(V_x)$ is $g\gamma_{\mu}$ open set in X such that $x \in f^{-1}(V_x)$ and $y \notin f^{-1}(V_x)$ or $f^{-1}(V_y)$ is $g\gamma_{\mu}$ open set in X such that $x \in g\gamma_{\mu}$ -T₀.

Definition 3.11: A mapping f: $X \rightarrow Y$ is said to be always $g\gamma_{\mu}$ -open, if the image of every $g\gamma_{\mu}$ -open set of X is $g\gamma_{\mu}$ -open in Y.

Lemma 3.12: The property of a space being $g\gamma_{\mu}$ -T₀ is preserved under one-one, onto and always $g\gamma_{\mu}$ -open mapping.

Proof: Let X be a $g\gamma_{\mu}$ -T₀ space and Y be any topological space. Let f: X→Y be a one-one, onto always $g\gamma_{\mu}$ -open mapping from X to Y. Let u, v \in Y with u \neq v. Since f is one-one, onto, there exist distinct points x, y \in X. Such that f(x) = u, f(y) = v. Since X is on $g\gamma_{\mu}$ -T₀ space. There exists $g\gamma_{\mu}$ -open set G in X such that $x \in G$ but $y \notin G$. Since f is always $g\gamma_{\mu}$ -open, f(G) is an $g\gamma_{\mu}$ -open set containing f(x) = u but not containing f(y) = v. Thus there exists an $g\gamma_{\mu}$ -open set f(G) in y such that $u \in f(G)$ but $v \notin f(G)$ and hence Y is an $g\gamma_{\mu}$ -T₀ space.

Next, we give the following

Definition 3.13: A sub set A of a space X is called a $g\gamma_{\mu}D$ -set if there are two $g\gamma_{\mu}$ -open subsets U and V such that $U \neq X$ and A = U-X.

Clearly, every $g\gamma_{\mu}$ —open set in $g\gamma_{\mu}$ D-set.

We, give the following

Definition 3.14: A space X is called a $g\gamma_{\mu}$ -D₀ if for any disjoint pair of points x and y of X there exists a $g\gamma_{\mu}$ D-set of X containing x but not y or a $g\gamma_{\mu}$ D-set of X containing y but not x.

Clearly, every $g\gamma_{\mu} - T_0$ space in $g\gamma_{\mu}D_0$ -space.

We prove the following

Theorem 3.15: If f: $X \rightarrow Y$ is $g\gamma_{\mu}$ -irresolute surjective function and A is a $g\gamma_{\mu}$ D-set in Y, then the inverse image of A is a $g\gamma_{\mu}$ D-set in X.

Proof: Let A be a $g\gamma_{\mu}D$ -set in Y. Then there are $g\gamma_{\mu}$ -open sets U₁ and U₂ in Y such that $A = U_1 - U_2$ and $U_1 \neq Y$. By the $g\gamma_{\mu}$ -irresoluteness of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are $g\gamma_{\mu}$ -open set in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(A) = f^{-1}(U_1) - f^{-1}(U_2)$ is a $g\gamma_{\mu}D$ -set.

We define the following

Definition 3.16: A space (X, μ) is $g\gamma_{\mu}$ -T₁ if and only if for x, y X such that x y, there exists a $g\gamma_{\mu}$ -open set containing x but not y and there is a $g\gamma_{\mu}$ -open set containing y but not x.

It is easy to verify the following:

• Every $g\gamma_{\mu}$ -T₁ space is a $g\gamma_{\mu}$ -T₀ space.

Theorem 3.17: A space X is a $g\gamma_{\mu}$ -T₁ space if and only if {x} is $g\gamma_{\mu}$ -closed in X for every $x \in X$.

Proof: Let x, y be two distinct points X such that $\{x\}$ and $\{y\}$ are $g\gamma_{\mu}$ -closed. Then $X-\{x\}$ and $Y-\{y\}$ are $g\gamma_{\mu}$ -open in X such that $y \in X-\{x\}$ but $x \notin X-\{x\}$ and $x \in X-\{y\}$ but $y \notin X-\{y\}$. Hence, X is an $g\gamma_{\mu}$ -T₁ space. Conversely, let X be an $g\gamma_{\mu}$ -T₁ space and x be any arbitrary point of X. If $y \in X-\{x\}$, then $y \neq x$. Now the space being $g\gamma_{\mu}$ -T₁ and y is a point different from x, there exists an $g\gamma_{\mu}$ -open set G_y such that $y \in G_y$. Thus for each $y \in X-\{x\}$, there exists an $g\gamma_{\mu}$ -open set G_y such that $y \in G_y \subset X-\{x\}$. Therefore $\cup\{y| \ y \neq x\} \subset \cup\{G_y| \ y \neq x\} \subset X-\{x\}$ which implies that $X-\{x\} \subset \cup\{G_y| \ y \neq x\} \subset X-\{x\}$. Therefore, $X-\{x\} = \cup\{G_y| \ y \neq x\}$. Since $G_y g\gamma_{\mu}$ -open in X and the union of $g\gamma_{\mu}$ -open sets in X is $g\gamma_{\mu}$ -open in X, $X-\{x\}$ is $g\gamma_{\mu}$ -open in X and so $\{x\}$ is $g\gamma_{\mu}$ -closed.

Recall the following

Definition 3.18: A topological space (X, μ) is γ_{μ} Symmetric if for x and y in x, $x \in \gamma_{\mu}Cl(\{y\})$ implies $y \in \gamma_{\mu}Cl(\{x\})$.

Definition 3.19: A topological space (X, μ) is $g\gamma_{\mu}$ -symmetric if for any x and y in X, $x \in g\gamma_{\mu}Cl(\{y\})$ implies $y \in g\gamma_{\mu}Cl(\{x\})$.

Theorem 3.20: If $\{x\}$ is $g\gamma_{\mu}$ -closed for each x in X then a space X is $g\gamma_{\mu}$ -symmetric.

Proof: Suppose $x \in g\gamma_{\mu}cl(\{y\})$ and $y \notin g\gamma_{\mu}cl(\{x\})$. Since $\{y\} \subset X - g\gamma_{\mu}cl(\{x\})$ and $\{y\}$ is $g\gamma_{\mu}$ -closed, $g\gamma_{\mu}cl(\{y\}) \subset X - gspcl(\{x\})$. Thus $x \in X - gspcl(\{y\})$, a contradiction.

Theorem 3.21: If a space X is extremely disconnected (i.e., closure of every open set is open) and $g\gamma_{\mu}$ -symmetric, then {x} is $g\gamma_{\mu}$ -closed, for each x in X.

Proof: Suppose $\{x\} \subset U$ where U is $g\gamma_{\mu}$ -open and $g\gamma_{\mu}Cl(\{x\}) \not\subset U$. Then $g\gamma_{\mu}Cl(\{x\}) \cap (X-U) \neq \emptyset$. Let $y \in g\gamma_{\mu}Cl(\{x\}) \cap (X-U)$. We have $x \in g\gamma_{\mu}Cl(\{x\}) \cap (X-U)$ and $x \notin U$, A contradiction. Hence $\{x\}$ is $g\gamma_{\mu}$ -closed in X.

Corollary 3.22: If X is extremely disconnected, then X is $g\gamma_{\mu}$ -T₁ if and only if X

is $g\gamma_u$ -symmetric.

Proof: Obvious

Next, we have the following invariant properties.

Theorem 3.23: Let f: X \rightarrow Y be a $g\gamma_{\mu}$ -irresolutes injective map. If Y is $g\gamma_{\mu}$ -T₁, then X is $g\gamma_{\mu}$ -T₁.

Proof: Assume that Y is $g\gamma_{\mu}$ -T₁. Let x, y \in Y be such that $x \neq y$. Then there exists a pair of $g\gamma_{\mu}$ -open sets u, v in Y such that $f(x) \in U$, $f(y) \in V$ and $f(x) \in V$, $f(y) \in U$. Then $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$. Since f is $g\gamma_{\mu}$ -irresolute, X is $g\gamma_{\mu}$ -T₁.

Corollary 3.24: A topological space (X, μ) is $g\gamma_{\mu}$ -T₁ if and only if every finite subset of X is $g\gamma_{\mu}$ -closed. We, define the following

Definition 3.25: A space X is called $g\gamma_{\mu}$ -D₁ if for any distinct pair of points x and y of X there exists a $g\gamma_{\mu}$ -Dset of X containing x but y and a $g\gamma_{\mu}$ -D set of X containing y but not x.

Clearly, every $g\gamma_{\mu}$ -T₁ space is $g\gamma_{\mu}$ -D₁ space.

Theorem 3.26: If Y is a $g\gamma_{\mu}$ -D₁ and f: X \rightarrow Y is $g\gamma_{\mu}$ -irresolute and bijective, then X is $g\gamma_{\mu}$ -D₁.

Proof: Suppose that Y is a $g\gamma_{\mu}$ -D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is $g\gamma_{\mu}$ -D₁, there exist $g\gamma_{\mu}$ -D sets G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 3.15, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $g\gamma_{\mu}$ -D sets in X containing x and y respectively. This implies that X is a $g\gamma_{\mu}$ -D₁ space.

We, define and study the concept of $g\gamma_{\mu}$ -R₀ spaces in the following:

Definition 3.27: Let X be a topological space and $A \subset X$. Then the generalized μ -kernel of A denoted by $g\gamma_{\mu}$ -ker(A), is defined to be the set $g\gamma_{\mu}$ -ker(A) = $\bigcap \{G \in g\gamma_{\mu} O(X) | A \subset G\}$.

Lemma 3.28: Let X be a topological space and $x \in X$. Then $y \in g\gamma_{\mu}$ -ker ({x}) if and only if $x \in g\gamma_{\mu}Cl(\{y\})$

Proof: Suppose that $y \in g\gamma_{\mu}$ -ker ({x}). Then there exists a $g\gamma_{\mu}$ -open set V containing x such that $y \in V$. Therefore, we have $x \in g\gamma_{\mu}Cl(\{y\})$. Conversely, Suppose that $x \in g\gamma_{\mu}$ -ker ({y}). Then there exists a $g\gamma_{\mu}$ -open set V containing y such that $x \in V$. Therefore, we have $y \in g\gamma_{\mu}Cl(\{x\})$. Lemma 3.29: Let X be a topological space and A be a subset of X. Then $g\gamma_{\mu}$ -ker (A)

 $= \{x \in X | g\gamma_{\mu} Cl(\{x\}) \cap A \neq \emptyset\}.$

Proof: Let $x \in g\gamma_{\mu}$ -ker (A) and suppose $g\gamma_{\mu}Cl(\{x\})=\emptyset$. Hence $x \in X | g\gamma_{\mu}Cl(\{x\})$ which is a $g\gamma_{\mu}$ -open set containing A. This is absurd. Since $x \in g\gamma_{\mu}$ -ker (A). Consequently, $g\gamma_{\mu}Cl(\{x\}) \cap A \neq \emptyset$. Next, let $g\gamma_{\mu}Cl(\{x\}) \cap A \neq \emptyset$ and suppose that $x g\gamma_{\mu}$ -ker(A). Then there exists $g\gamma_{\mu}$ -open set U containing A and $x \in U$. Let $y \notin g\gamma_{\mu}Cl(\{x\}) \subset A$. hence, U is a $g\gamma_{\mu}$ -neighbourhood of y where $x \notin U$. But this is a contradiction, Therefore $x \in g\gamma_{\mu}$ -ker(A) and the claim.

Now, we define the following

Definition 3.30: A space X is said to be $g\gamma_{\mu}$ -R₀ space if every $g\gamma_{\mu}$ -open set contains the $g\gamma_{\mu}$ -closure of each of its singletons.

Clearly, every $g\gamma_{\mu}$ -R₀ space id $g\gamma_{\mu}$ -T₁ space.

We recall the following:

Definition 3.31: A topological space (X, μ) is said to be $g\mu$ -R₀ space if every $g\mu$ -open set contains the $g\mu$ -closure of each of its singletons.

Theorem 3.32: For any topological space X the following properties are equivalent:

(i) X is $g\gamma_{\mu}$ -R₀ space;

- (ii) For any $F \in g\gamma_{\mu}C(X, \mu) \ x \notin F \Rightarrow F \subset U$ and $x \notin U$ for some $U \in g\gamma_{\mu}C(X, \mu)$;
- (iii) For any $F \in g\gamma_{\mu}C(X, \mu) \ x \notin F \Rightarrow F \cap g\gamma_{\mu}Cl(\{x\}) = \phi$;
- (iv) For any distinct points x and y either $g\gamma_{\mu} Cl(\{x\}) = g\gamma_{\mu} Cl(\{y\})$ or $g\gamma_{\mu} Cl(\{x\})$

IJCRT2305248 International Journal of Creative Research Thoughts (IJCRT) <u>www.ijcrt.org</u> b904

 $g\gamma_{\mu}Cl(\{y\}) = \phi.$

Proof: (i) \Rightarrow (ii): Suppose $F \in g\gamma_{\mu}C(X, \mu)$ and $x \notin F$. Then by (i) $g\gamma_{\mu}Cl(\{x\}) \subset X|F$. Set $U = X g\gamma_{\mu}(\{x\})$ then $U \cup \in g\gamma_{\mu}O(X, \mu)$ $F \subset U$ and $x \notin U$

(ii) \Rightarrow (iii): Let $F \in g\gamma_{\mu}C(X, \mu)$, $x \notin F$. Therefore, there exists $U \in g\gamma_{\mu}O(X, \mu)$ Such that $F \subset U$ and $x \notin U$. Since $U \in g\gamma_{\mu}O(X, \mu) \cup g\gamma_{\mu}Cl(\{x\}) = \phi$. and $F \cap g\gamma_{\mu}Cl(\{x\}) = \phi$.

(iii) \Rightarrow (iv): Suppose that $g \gamma_{\mu} Cl(\{x\}) \neq g \gamma_{\mu} Cl(\{y\})$ for distinct points x, $y \in X$. There exist $z \in g\gamma_{\mu}Cl(\{x\})$ such that $z \notin g\gamma_{\mu}Cl(\{y\})$. One can also assume that $z \in g\gamma_{\mu}Cl(\{y\})$ such that $z \notin g\gamma_{\mu}Cl(\{x\})$. There exists $V \in g\gamma_{\mu}O(X, \mu)$ such that $y \notin V$ and $z \in V$. Hence $x \in V$. Therefore we obtain $x \notin g\gamma_{\mu}Cl(\{y\})$. By (iii) we obtain $g\gamma_{\mu}Cl(\{x\}) \cap g\gamma_{\mu}Cl(\{y\}) = \phi$. The proof of otherwise is similar. (iv) \Rightarrow (i): Let $V \in g\gamma_{\mu}O(X, \mu)$ and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin g\gamma_{\mu}Cl(\{y\})$. This show that $g\gamma_{\mu}Cl(\{x\}) \neq g\gamma_{\mu}Cl(\{y\})$. By (iv) $g\gamma_{\mu}Cl(\{x\}) \cap g\gamma_{\mu}Cl(\{y\}) = \phi$ for each $y \in X | V$. Hence $g\gamma_{\mu}Cl(p\{x\}) \cap (U\{g\gamma_{\mu}Cl(\{y\})| | y X | V\} = \phi$. On the other hand, since $V \in g\gamma_{\mu}O(X, \mu)$ and $y \notin X | V$. We have $g\gamma_{\mu}Cl(\{y\}) \subset X | V$. Therefore $X | V = U\{g\gamma_{\mu}Cl(\{y\})| | y X | V\}$. Therefore we obtain $(X | V) \cap g\gamma_{\mu}Cl(\{x\}) = \phi$ and $g\gamma_{\mu}Cl(\{x\}) \subseteq V$. Hence (X, μ) is $g\gamma_{\mu}-R_0$ space.

Finally, we define and study the following.

Definition 3.33: A space X is said to be a $g\gamma_{\mu}$ -R₁ if for x, y in X with $g\gamma_{\mu}Cl(\{x\}) \neq g\gamma_{\mu}Cl(\{y\})$, there exists disjoint $g\gamma_{\mu}$ -open sets U and V such that $g\gamma_{\mu}Cl(\{x\}) \subset U$ and $g\gamma_{\mu}Cl(\{y\}) \subset V$.

Definition 3.34: A topological space X is said to be $g \mu - R_1$ space if for x, y in X with $g \mu Cl(\{x\})$ $g \mu Cl(\{y\})$, there exist disjoint $g \mu$ -open sets U and V such that $g \mu Cl(\{x\})$ is a subset of U and $g \mu Cl(\{y\})$ is a subset of V.

Theorem 3.35: If X is gsp-R₁, then X is gsp-R₀-space.

Proof: Let U be a $g\gamma_{\mu}$ -open and $x \in U$. If $y \notin U$ then since $x \subset g\gamma_{\mu}Cl(\{y\}), g\gamma_{\mu}Cl(\{x\}) \subset g\gamma_{\mu}Cl(\{y\})$. Hence there exists a $g\gamma_{\mu}$ -open V such that $g\gamma_{\mu}Cl(\{x\}) \subset V$ and $x \notin V$, which implies $y \subset g\gamma_{\mu}Cl(\{x\})$. Thus $g\gamma_{\mu}Cl(\{y\}) \subset U$. Therefore (X, μ) is $g\gamma_{\mu}$ -R₀ space.

Conclusion: If we replace μ by different GT's or γ_{μ} by different operators, we can obtain various forms of generalized closed sets and related continuous functions.

References:

- 1. Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
- 2. Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66.
- Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120(3) (2008), 275–279.
- 4. D. S. Janković, On functions with γ-closed graphs, Glasnik Mat., 18(38) (1983), 141–148.
- 5. S. Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97–105.
- 6. G.S.S. Krishnan, M. Ganster and K. Balachandran, Operation ap- proaches on semi open sets and its application, Kochi J. Math., 2 (2007), 21–33.
- 7. H. Ogata, Operations on topological spaces and associated topology, Math. Japon., 36 (1991), 175–184.
- 8. B. Roy, On a type of generalized open sets, Applied Gen. Topology., 12 (2011), 163-173.
- 9. B. Roy, Applications of operations on minimal generalized open sets, Afrika Mat., 29 (2018), 1097–1104.
- 10. B. Roy and T. Noiri, γ_{μ} -Lindelöf generalized topological spaces, Jour. of Linear and Topol. Algebra, 8(4) (2019), 257–263.
- 11. T. Van An, D. X. Cuong. and H. Maki, On operation-preopen sets in topological space, Sci. Math. Japon., e-(2008), 241–260.
- 12. D. Andrijevic, Semipreopen sets, Math. Vensik 38(1),(1986), 24-32.

- 13.I. Arokiarani, K.Balachandran and J.Dontchev "Some characterizations of gp-irresolute and gp-continuous maps between Topological spaces" Men.Fac.Sci.Kochi Univ(Math) 20(1999), 93-104
- 14.S.Balasubramanian and Ch.Chaitanya'' On αg-Separation Axioms'' International Journal Of Mathematics Archive-3(3), 2012, Page: 877-888
- 15.J.Dontchev ,On generalizingsemi-pre open sets,Mem.Fac.Sci. Kochi.Univ. .Ser. A.Math,6(1995), 35-48.
- 16.S.N.El-Deeb, I.A. Hasanein, A.S.Mashhour and T. Noiri, On p-regular spaces, Bull Math. Soc. Sci. Math. R.S.Roumanie (N.S), 27(75), (1983), 311-315.
- 17. N.Levine, Generalized closed sets in Topology, Rend.Cric.Math.Palermo, 19(2)(1970), 89-96.
- 18.H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets & α-generalized closed sets, Mem.Rac.Sci.Kochi.Univ.Ser.A.Math, 15(1994), 51-63.
- 19.A.S. Mashhoour, M.E. Abd El-Monsef and S.N .El-Deeb, On Pre continuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), pp.47-53.
- 20.A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, On α- continuous and α-open mapping, Acta. Math. Hungar. 41 (1983), 213-218.
- 21.G B Navalagi "Definition Bank in General Topology" Topology Atlast Preprint# 449
- 22.G.Navalagi, M.Rajmani and K.Viswanathan αgs-Separation Axioms In Topology Inernational Joueal of General Topology Vol. 1,No. 1 (June 2007), p. 43-53
- 23. Govidapp Navalagi and Girish Sajjanshetter " generalized Pre-R0 spaces". IJECSM. Vol.3,No.1, January-June 2012, pp 7-12
- 24.O.Njstad, On some classes of nearly open sets, Pacific Jour.of Mathematics, 15(1965),pp. 961-970.
- 25.T. Noiri, H. Maki and J. Umehara, Generalized preclosed functions, Mem.Fac.Sci.Kochi. Univ. Ser.A, Math, 19(1998)13-24
- 26. Thakur C.K.Raman, Vidyottama kumari, M.K.Sharma "α-generalized & α*-Separation Axioms for Topological Space" ISOR Journal of Mathematics (IOSR-JM) Volume10. Issue 3 Ver.VI (May-June 2014),pp 32-36.